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Figure 1. Left: A low-cost, high-density, large-scale intelligent carpet system to capture the real-time human-floor tactile interactions.
Right: The inferred 3D human pose from the captured tactile interactions of a person standing up from a sitting position.

Abstract

Daily human activities, e.g., locomotion, exercises, and
resting, are heavily guided by the tactile interactions be-
tween the human and the ground. In this work, leveraging
such tactile interactions, we propose a 3D human pose es-
timation approach using the pressure maps recorded by a
tactile carpet as input. We build a low-cost, high-density,
large-scale intelligent carpet, which enables the real-time
recordings of human-floor tactile interactions in a seam-
less manner. We collect a synchronized tactile and visual
dataset on various human activities. Employing a state-of-
the-art camera-based pose estimation model as supervision,
we design and implement a deep neural network model to
infer 3D human poses using only the tactile information.
Our pipeline can be further scaled up to multi-person pose
estimation. We evaluate our system and demonstrate its po-
tential applications in diverse fields.

1. Introduction
Human pose estimation is critical in action recognition

[30, 52], gaming [26], healthcare [64, 36, 22], and robotics
[34]. Significant advances have been made to estimate hu-
man pose by extracting skeletal kinematics from images
and videos. However, camera-based pose estimation re-
mains challenging when occlusion happens, which is in-

evitable during daily activities. Further, the rising demand
for privacy also promotes development in non-vision-based
human pose estimation systems [63, 62]. Since most hu-
man activities are dependent on the contact between the
human and the environment, we present a pose estima-
tion approach using tactile interactions between humans
and the ground. Recently, various smart floor or carpet
systems have been proposed for human movement detec-
tion [11, 2, 48, 7, 3, 60, 40, 16, 1], and posture recognition
[25, 50]. Previous work has also demonstrated the feasibil-
ity of using pressure images for pose estimation [6, 9, 8].
However, these studies mainly focus on the estimation of
poses where a large portion of the body is in direct con-
tact with the sensing surface, e.g., resting postures. A more
challenging task is to infer 3D human pose from the limited
pressure imprints involved in complicated daily activities,
e.g., using feet pressure distribution to reconstruct the pose
of the head and limbs. So far, complex 3D human pose esti-
mation and modeling using tactile information, spanning a
diverse set of human activities including locomotion, rest-
ing, and daily exercises, have not been available.

In this study, we first develop an intelligent carpet –
a large integrated tactile sensing array consisting of over
9,000 pressure sensors, covering over 36 square feet, which
can be seamlessly embedded on the floor. Coupled with
readout circuits, our system enables real-time recordings



of high-resolution human-ground tactile interactions. With
this hardware, we collect over 1,800,000 synchronized tac-
tile and visual frames for 10 different individuals perform-
ing a diverse set of daily activities, e.g., lying, walking, and
exercising. Employing the visual information as supervi-
sion, we design and implement a deep neural network to in-
fer the corresponding 3D human pose using only the tactile
information. Our network predicts the 3D human pose with
the average localization error of less than 10 cm compared
with the ground truth pose obtained from the visual infor-
mation. The learned representations from the pose estima-
tion model, when combined with a simple linear classifier,
allow us to perform action classification with an accuracy
of 98.7%. We also include ablation studies and evaluate
how well our model generalizes to unseen individuals and
unseen actions. Moreover, our approach can be scaled up
for multi-person 3D pose estimation. Leveraging the tactile
sensing modality, we believe our work opens up opportuni-
ties for human pose estimation that is unaffected by visual
obstructions in a seamless and confidential manner.

2. Related Work

2.1. Human Pose Estimation

Thanks to the availability of large-scale datasets of an-
notated 2D human poses and the introduction of deep neu-
ral network models, human pose estimation from 2D im-
ages or videos has witnessed major advances in recent
years [57, 56, 45, 38, 39, 59, 46, 5, 17, 12, 20, 54]. Re-
covering 3D information from 2D inputs is intrinsically
ambiguous. Some recent attempts to recover 3D human
pose from 2D images either require explicit 3D supervi-
sion [33] or rely on a discriminator and adversarial train-
ing to learn a valid pose distribution [23, 24] or perform-
ing semi-supervised learning by leveraging the temporal in-
formation [44]. Still, 3D pose estimation remains a chal-
lenging problem due to the underlying ambiguity. Many
methods do not perform well in the presence of a severe
occlusion. Another alternative is to use multi-camera mo-
tion capture systems (e.g., VICON) or multiple cameras to
obtain a more reliable pose estimation [51, 63, 21].

Our work builds upon the past advances in computer
vision by using OpenPose [4] to extract the 2D keypoints
from multiple cameras and triangulate them to generate the
ground truth 3D pose. Our system predicts 3D pose from
only the tactile signals, which does not require any visual
data and is fundamentally different from all past work in
computer vision. The introduced tactile carpet has a lower
spatial resolution than typical cameras. However, it func-
tions as a camera viewing humans from the bottom up. This
type of data stream does not suffer from occlusion problems
that are typical for camera systems. Furthermore, it pro-
vides additional information, such as whether humans are
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Figure 2. Tactile data acquisition hardware. Top: Our recording
set-up includes a tactile sensing carpet spanning 36 ft2 with 9,216
sensors (upper right), the corresponding readout circuits, and 2
cameras. Bottom: Typical pressure maps captured by the carpet
from diverse human poses and activities.

in contact with the ground and the pressure they exert.

2.2. Tactile Sensing

Recent advances in tactile sensing have benefited
the recording, monitoring, and modeling of human-
environment interactions in a variety of contexts. Sun-
daram et al. [55] have investigated the signatures of hu-
man grasp through the tactile interaction between human
hands and different objects, while other researchers have
proposed to connect vision and touch using cross-domain
modeling [31, 61, 28]. Davoodnia et al. [10] transform an-
notated in-bed human pressure map [41, 15] to images con-
taining shapes and structures of body parts for in-bed pose
estimation. Furthermore, extensive works on biomechanics,
human kinematics, and dynamic motions [13, 29, 35, 32]
have explored the use of the foot pressure maps induced
by daily human movement.Previous studies have demon-
strated human localization and tracking by embedding in-
dividual pressure sensing units in the smart floor systems
[53, 50]. Furthermore, using large-scale pressure sensing
matrices, researchers have been able to capture foot pres-
sure patterns when humans are standing and walking and
develop models that provide gait analysis and human identi-
fication [43, 58, 37]. Based on the fact that human maintains
balance through redirecting the center of mass by exerting
force on the floor [19], Scott et al. [49] have predicted foot
pressure heatmap from 2D human kinematics.

Different from previous works, which include only lim-
ited actions due to the limited size and resolution of the
tactile sensing platform, we record and leverage high-
resolution tactile data from diverse human daily activities,
e.g., exercises, to estimate 3D human skeleton.

3. Dataset
In this section, we describe details of our hardware setup

for tactile data acquisition, pipeline for ground truth 3D
keypoint confidence map generation, as well as data aug-
mentation and synthesis for multi-person pose estimation.
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Figure 3. 3D keypoint confidence map generation. The ground
truth voxelized 3D keypoint confidence maps are annotated by first
extracting 2D skeleton keypoints from RGB images using Open-
Pose [4], then generating 3D keypoints through triangulation and
optimization, and finally applying a 3D Gaussian filter.

3.1. Tactile Data Acquisition

Our tactile data acquisition is based on a custom, high-
density, large-scale piezoresistive pressure sensing carpet,
which spans over 36 ft2 and contains 9,216 sensors with
a spacing of 0.375 inches. The carpet is composed of a
piezoresistive pressure sensing matrix fabricated by align-
ing a network of orthogonal conductive threads as elec-
trodes on each side of the commercial piezoresistive films.
Each sensor locates at the overlap of orthogonal electrodes
and is able to measure pressure up to 14 kPa with the highest
sensitivity of 0.3 kPa. Our tactile sensing carpet is low-cost
(∼$100), easy to fabricate, and robust for large-scale data
collection. Using the coupled readout circuit, we collect the
tactile frames with 9,216 individual sensing readouts at a
rate of 14 Hz.

With such a large-scale high-resolution tactile sensing
platform, we can not only capture people’s foot pressure
maps, which most of the previous work focused on, but also
capture the full tactile interactions between the human and
the floor when people are performing complex activities.
As shown in Figure 2, our carpet captures the feet pressure
maps when people perform activities in upright positions, as
well as the physical contacts between the human body (e.g.,
hands, limbs) and the floor when people perform exercises
and complex actions (e.g., push-ups, sit-ups, and rolling).

We have collected over 1,800,000 synchronized tactile
and visual frames for 10 volunteers performing 15 actions.
More details are included in supplementary materials. Our
tactile acquisition set-up and the captured dataset are open-
sourced to facilitate future research in the field.

3.2. 3D Pose Label Generation

We design and implement a pipeline to capture and gen-
erate the training pairs, i.e., synchronized tactile frames and
3D keypoint confidence maps. We capture visual data with
2 cameras that are synchronized and calibrated with respect
to the global coordinate of the tactile sensing carpet using
standard stereo camera calibration techniques. In order to

annotate the ground truth human pose in a scalable manner,
we leverage a state-of-the-art vision-based system, Open-
Pose [5], to generate 2D skeletons from the images captured
by the cameras.

Once we have obtained the 2D skeletons generated from
the calibrated camera system, we triangulate the keypoints
to generate the corresponding 3D skeletons. The triangu-
lation results may not be perfect in some frames due to
perception noise or misdetection. To resolve this issue,
we add a post-optimization stage to constrain the length of
each link. More specifically, we first calculate the length
of the links in the skeleton using the median value across
the naively triangulated result for each person. For this spe-
cific person, we denote the length of the ith link as Ki. We
then use qA and qB to represent the detected N keypoints
at a specific time step from the two cameras, which lie in a
2D space, where qA = {qA

1 , . . . , q
A
N} and qA

k = (uA
k , v

A
k ).

We then calculate the length of each link K̂i from the naive
triangulation result and optimize the 3D location of the key-
points p = {p1, . . . ,pN} by minimizing the following loss
function using stochastic gradient descent:

Lskeleton =

N∑
k=1

‖PApk − qA
k ‖+

N∑
k=1

‖PBpk − qB
k‖

+

N−1∑
i=1

‖K̂i −Ki‖

(1)

where there are N keypoints and N − 1 links, p =
{p1, . . . ,pN} lie in 3D space spanned by the world coordi-
nate, pk = (xk, yk, zk). PA and PB are the camera matrices
that project the 3D keypoints onto the 2D image frame. In
our experiments, we use N = 21. The accuracy of the 3D
pose label and the effectiveness of our optimization pipeline
are further analyzed in supplementary materials.

Given the optimized 3D positions of the 21 keypoints on
the human skeleton, we further generate the 3D keypoint
confidence maps by applying a 3D Gaussian filter over the
keypoint locations on a voxelized 3D space (Figure 3).

3.3. Data Augmentation and Multi-person Dataset
Synthesis

When projecting the human skeletons to the x-y plane
(Figure 1), we find a spatial correspondence between the
projection and the tactile signals, which allows us to aug-
ment our dataset by rotating and shifting the tactile frames
and the corresponding human skeletons.

Due to the restriction of social distancing and the size of
the sensing carpet, we conduct the data collection with only
one person at a time. The multi-person dataset, however, is
synthesized by combining multiple single-person clips. In
other words, we add up the synchronized tactile frames and
the generated 3D keypoint confidence maps from different
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Figure 4. Overview of the model for 3D human pose estimation. Our model consists of an encoder and a decoder. The encoder maps
the input tactile sequence into a 10×10 feature through 7 blocks of Conv2D-LeakyReLU-BatchNorm. We then expand the feature and
repeat along the last dimension to transform the 2D feature map into a 3D feature volume. After appending an indexing volume indicating
the height of each voxel, the feature goes through a set of decoding layers to generate the predicted confidence map for each keypoint.

recording clips. More specifically, since people rarely per-
form actions with one on top of the other, we assume that
the pressure maps induced by the actions of different people
will not overlap at the given time. We specify the location of
each person by creating anchor boxes of the human skele-
ton projected onto the floor plane. We remove frames with
the Intersection over Union (IoU) larger than 0.1 to ensure
that the skeletons and tactile signals from different people
do not overlap with each other. Note that the training of our
models in the experiments is entirely based on the single-
person dataset and the synthetic multi-person variants. We
also record synchronized visual and tactile data for multiple
people but only for evaluation purposes.

4. Method
In this section, we present the details of our pose estima-

tion model. We first discuss how we transform the tactile
frames into 3D volumes indicating the confidence map of
the keypoints. We then describe how we extend it to multi-
person scenarios and present the implementation details.

4.1. Keypoint Detection using Tactile Signals

The goal of our model is to take the tactile frames as
input and predict the corresponding 3D human pose. We
take the ground truth human pose estimated from our multi-
camera setup as the supervision and train our model to pre-
dict the 3D confidence map of each of the 21 keypoints, in-
cluding head, neck, shoulders, elbows, waists, hips, knees,
ankles, heels, small and big toes.

To include more contextual information and reduce the
effects caused by the sensing noise, instead of taking a sin-
gle tactile frame as input, our model takes a sequence of
tactile frames spanning a temporary window of length M
as input (Figure 4). For each input segment, the model pro-
cesses the spatio-temporal tactile information and outputs
the keypoint confidence maps in 3D that correspond to the

middle frame.
As shown in Figure 1, the input tactile frames lie in 2D

space, which has a nice spatial correspondence with the
human skeleton over the x-y plane (the floor plane). Our
model builds on top of a fully convolutional neural network
to exploit such spatial equivariance. The encoder of our
model uses 2D convolution to process the tactile frames.
Then, to regress the keypoints in 3D, we expand the feature
map by repeating it along a new dimension in the middle
of our network (Figure 4), which essentially transforms the
2D feature map into a 3D feature volume. However, naive
2D to 3D expanding via repetition will introduce ambigu-
ities as subsequent convolutional layers use shared kernels
to process the feature - it is impossible to tell the height of
a specific voxel, making it hard to regress the keypoint lo-
cation along the z-axis. To resolve this issue, we add a new
channel to the 3D feature map with a 3-dimensional index-
ing volume, indicating the height of each voxel. We then
use 3D convolution to process the feature and predict the
3D keypoint confidence map for each of the 21 keypoints.
The detailed architecture and the size of the feature maps
along the forwarding pass are shown in Figure 4.

We optimize the model by minimizing the Mean Squared
Error (MSE) between the predicted keypoint heatmap and
the ground truth using Adam optimizer [27]. We also use
spatial softmax to transform the heatmap into the keypoint
location and include an additional loss term Llink to con-
strain the length of each link in the skeleton to lie in the
range of normal human limb length. For each data point,
the loss function is defined as:

L =
1

N

N∑
i=1

‖Hi − Ĥi‖+
1

N − 1

N−1∑
i=1

Llink
i , (2)

where N denotes the number of keypoints, N − 1 is the
number of links in the skeleton, Hi and Ĥi represent the
ground truth and the predicted 3D keypoint confidence



maps. The link loss is defined as the following:

Llink
i =


Kmin

i − K̂i, if K̂i < Kmin
i .

K̂i −Kmax
i , if K̂i > Kmax

i .

0, otherwise,
(3)

where K̂i is the link length calculated from our prediction,
Kmin

i and Kmax
i represent the 3th and 97th percentile of each

of the body limb length in the training dataset.

4.2. Keypoint Detection for Multiple People

When moving into multi-person scenarios, each key-
point confidence map can contain multiple regions with
high confidence that belong to different people. Therefore,
we threshold the keypoint confidence map to segment out
each of these high confidence regions, and then calculate
the centroid of each region to transform it into the 3D key-
point location. To associate the keypoints that belong to the
same person, we start from the keypoint of the head and tra-
verse through the person’s skeleton (represented as a tree)
to include the remaining keypoints. Every time we want to
add a new keypoint to the person, e.g., the neck, we select
the one among multiple extracted keypoint candidates with
the closest L2 distance to its parent, e.g., head, which has
already been added to the person on the skeleton tree. This
method is simple but works well when people are kept at
a certain distance from each other. More complicated and
effective techniques could be used to handle cases where
people are very close to each other [5]. Since it is not the
main focus of this paper, we plan to explore this direction
in the future.

4.3. Implementation Details

Our network is implemented using PyTorch [42]. We
train the model by minimizing Eq. 2 using a learning rate
of 1e−4 and a batch size of 32. As shown in Figure 4, the
encoding part of our network consists of 7 groups of layers.
The Conv2D in the first 5 and the 7th layers use 3×3 ker-
nels and 1×1 padding. The 6th uses 5×5 kernels and zero
padding. A 2×2 MaxPool2D is also applied in the 2nd, 4th,
and 7th layers to reduce the resolution of the feature maps.

We expand the tactile feature maps to 3D by repeating
the tensor 9 times along the last dimension, and then ap-
pend the channel with a 3D indexing volume indicating the
height of each voxel. The decoding network takes in the
resulting tensor and predicts the 3D confidence maps of the
keypoints.

The decoder is composed of 5 layers of 3×3×3 3D con-
volution with a padding of 1×1 ×1. The 11th layer uses
a kernel size of 2×2×2 with a stride of 2 to increase the
resolution. We also apply batch normalization and Leaky
ReLU after each layer except the last one, where we use the
Sigmoid activation function to regress the confidence value.

Axis

X 6.8 6.4 6.3 8.9 10.9 4.6 5.8 5.6 6.4

Y 7.2 8.0 6.5 8.8 10.9 5.2 5.8 5.7 6.7

Z 6.8 9.6 7.0 8.9 14.4 4.0 4.0 3.1 3.5

Ave.  Head  Shoulder  Elbow  Wrist   Hip  Knee  Ankle  Feet

Figure 5. Results on single person pose estimation (unit: cm).
Top: The Euclidean distance between the predicted single-person
3D skeleton (21 keypoints) and the ground truth label. Bottom:
Average keypoint localization error of body parts along the X, Y,
and Z axis in the real-world coordinate. Since the changes in pres-
sure maps are dominated by the movements of the lower body and
the torso, their predictions are more accurate.

5. Experiments

5.1. Single Person Pose Estimation

Single-person pose estimation is trained with 135,000
pairs of tactile and visual frames and validated on 30,000
pairs of frames. The performance is tested on a held-out test
set with 30,000 tactile frames. We use Euclidean distance
(L2) as the evaluation metric to compare the predicted 3d
human pose to the corresponding ground truth human pose
retrieved from the visual data. The L2 distance of each key-
point and the localization error of each body part are listed
in Figure 5. Generally, keypoints on the lower body (e.g.,
knee and ankle) and the torso (e.g., shoulder and hip) hold
higher accuracy compared with the keypoints on the upper
body (e.g., waist and head). The observation agrees with
our intuition that changes in pressure maps are primarily de-
termined by the positions of the lower body and the torso.
We also note that the model obtains better predictions if the
keypoints are closer to the torso on the skeleton tree - the
prediction error increases as we move further away from the
torso, e.g., shoulders to elbows, and then to the waist. Fig-
ure 6 shows some qualitative results on the 3D human pose
predictions, along with the input tactile frames, ground truth
pose extracted from the RGB image, over a continuous time
sequence.

We perform ablation studies on the sensing resolution
of the intelligent carpet. To ablate the tactile sensing res-
olution, we reassign the value in each 2 × 2 grid with the
average of the four values, which reduces the effective reso-
lution from 96× 96 to 48× 48. We then use the same train-
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Figure 6. The qualitative results of single-person 3D pose estimation across time steps. For each sequence, from top to bottom, we
show the RGB image as ground truth annotation (only used here for visualization purpose), the captured tactile frame, ground truth 3D
skeleton, and predicted 3D skeleton from our model using only the tactile frames (unit: cm). The predicted poses are consistent over time
with a smooth transition along the corresponding trajectories.

Figure 7. Ablation studies. Model performance with different
sensing resolution (left) and the number of input frames (right).

ing pipeline to derive the predictions. A similar procedure
is employed for evaluating the model performance with the
effective sensing resolution of 24 × 24 and 12 × 12. As
Figure 7 illustrates, the prediction accuracy decreases with
the decrease of sensing resolution, which reiterates the im-
portance of our high density, large-scale tactile sensing plat-
form. We also perform an ablation study on the number of
input frames, where the best performance was obtained with
20 input frames (∼1.5 sec, Figure 7). We include additional
ablation studies on our pose estimation model, i.e. the 3D
indexing volume, repeating tensor, and link length loss, in
supplementary materials.

We evaluate how well the model generalizes to unseen
individuals and activities. As demonstrated in Figure 8, our

model generalizes to unseen people with a negligible in-
crease of the keypoint localization error. On the other hand,
our model has a varying performance on different types of
unseen tasks. The learned model easily generalizes to poses
with the pressure maps similar to what the model is trained
on but delivers poor performance with tactile imprints that
the model has never encountered before. For example, our
model generalizes to the lunging pose, where the pressure
maps are mainly directed by the human’s center of mass;
however, it fails to predict the push-up pose, which induces
pressure imprints that are vastly different from the training
distribution. When deploying the system for practical use
in real life, it is essential to perform a more systematic data
collection procedure covering more typical human activities
to achieve a more reliable pose estimation performance.

5.2. Action Classification

To obtain a deeper understanding of the learned features
in the pose estimation network, we perform action classifi-
cation by applying a linear classifier on the downsampled
tactile feature maps. We use the dataset on one single per-
son performing 10 different actions, where 80% is used
for training, 10% for validation, and 10% for testing. As
demonstrated in Figure 9, we obtain an accuracy of 97.8%,
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Figure 9. Results on action classification. Left: Confusion
matrix of action classification using a linear classifier on the
learned features from the pose estimation model. The linear
model achieves good accuracy, suggesting that the learned features
contain semantically meaningful information on the input tactile
frames. Right: Representative tactile frames from different ac-
tions.

which demonstrates the capability of our model to facilitate
downstream classification tasks.

5.3. Multi-person Pose Estimation

We further extend our model for multi-person pose es-
timation. As discussed in Section 4.2, the multi-person
pose estimation model is trained and validated with 112,000
and 10,000 pairs of synthesized tactile frames and keypoint
confidence maps. Performance is evaluated with 4,000
recorded tactile frames of two people performing stepping,
sitting, lunging, twisting, bending, squatting, and standing
on toes. The L2 distance of each keypoint and the localiza-
tion error of each body part are listed in Figure 10. Exam-
ples of the multi-person pose prediction are shown in Figure
11. Purely from the tactile information, our network suc-

Axis

X 14.5 14.1 10.1 15.3 24.7 10.2 12.6 14.1 14.9

Y 12.9 13.9 10.8 15.9 21.6 10.1 11.0 9.7 9.9

Z 12.7 16.6 13.2 17.3 23.9 10.0 8.0 6.5 6.4

Ave.  Head  Shoulder  Elbow  Wrist   Hip   Knee  Ankle  Feet

Figure 10. Results on multi-person scenarios (unit: cm). Top:
Euclidean distance between the predicted multi-person 3D skele-
ton and the ground truth. Bottom: Average keypoint localization
error of body parts along the X, Y, and Z axis in the real-world
coordinate.

cessfully localizes each individual and predicts his or her
3D pose with a localization error of less than 15 cm. The
predictions do not rely on any visual information and, there-
fore, are unaffected by visual obstructions or a limited field
of view, which are common challenges in vision-based hu-
man pose estimation.

5.4. Failure Cases

As demonstrated in Figure 12, the typical failure cases
can be categorized into three main types. First, the model
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Figure 11. Qualitative results of multi-person 3D human pose estimation. From top to bottom, we show the RGB image for ground
truth annotation, the captured tactile frame, ground truth 3D skeleton, and the predicted 3D skeleton from our model using only the tactile
frames (unit: cm). Our network learns to localize each individual and predict the corresponding 3D pose.
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Figure 12. Failure cases. Our model fails due to the lack of dis-
cernible physical contact with the floor (a-b) or the ambiguity of
the tactile signal (c-e).

fails to predict the position of the waist and the head (Fig-
ure 12 a). This is expected as we observe that the pres-
sure distributions of the tactile maps are rarely or not af-
fected by the movement of the head and wrist when a per-
son is standing on feet. Also, the model fails to predict the
poses where actions are performed without notable physical
contact with the floor, e.g., free-floating legs during sit-ups
and twisted torso during the standing-up process (Figure 12
b and e). Furthermore, different actions may induce very
similar pressure imprints, e.g., bending and twisting, caus-
ing trouble for the model to distinguish the activities due
to the intrinsic ambiguity of the tactile signal (Figure 12 c
and d). As for the multi-person pose estimation, additional
errors can happen because of the ambiguity underlying the
tactile signals from different individuals, where the model
fails when two people are too close to each other. This type
of data is not included in our synthetic training dataset.

6. Limitations and Future Work

We observe that even with the constraint on the human
body link lengths, some predicted human poses appear un-

realistic in real life. Therefore, adversarial prior can be im-
posed to further constrain the predicted 3D human pose.
Also, we currently use the same model for the single-person
and multi-person pose estimation, which suffers from the
ambiguity of the tactile signal induced by multiple people
that are too close to each other. To obtain more accurate pre-
dictions on multi-person pose estimation, a region proposal
network can be applied to localize the tactile information
belonging to each of the individuals, which will then respec-
tively pass through the pose estimation network to predict
the pose of each person [14, 47, 18]. Estimation and mod-
eling of multi-person interactions from tactile information
would be another interesting future direction.

7. Conclusion
We built a low-cost, high-density, large-scale tactile

sensing carpet and captured a large tactile and visual dataset
on humans performing daily activities. Leveraging the per-
ception results from a vision system as supervision, our
model learns to infer single-person and multi-person 3D
human skeletons with only the tactile readings of humans
performing a diverse set of activities on the intelligent car-
pet. This work introduces a sensing modality that is dif-
ferent and complementary to the vision system, opening up
new opportunities for human pose estimation unaffected by
visual obstructions in a seamless and confidential manner,
with potential applications in smart homes, healthcare, and
gaming.
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